Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2027
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Environmental stress forces populations to move away from oppressive regions and look for desirable environments. Different species can respond to the same spatial distributions of resources and toxicants with distinct movement strategies. However, the optimal behavioral strategy may differ when resources and stressors occur simultaneously or if they are distributed in different patterns. We compared the total abundance of two strains ofCaenorhabditis eleganswith different locomotion speeds as they forage in various spatial distributions of resources and toxicants. Informed by the experimental observations, we proposed a new two‐state population model, wherein nutrient uptake and reproduction are modeled separately, as driven by the spatial distribution of resources and toxicants. We found that fast movers had an advantage when either the toxicant coverage or the overlap between toxicants and resources was increased. Also, to assess the effectiveness of designing refuges to conserve species in stressful cases, we compared different preferences of locations of refuge areas according to movement strategies. Our mathematical model explained that fast movement enables individuals to consume resources at one location and reproduce at a separate location to avoid the toxicant‐induced reduction in reproduction rate, which underlined its observed advantage in certain experimental settings. This work provided a better model to predict how species with different movement strategies respond to environmental stressors in natural systems.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available November 13, 2025
- 
            The Arctic Oscillation (AO) has been observed to undergo distinct decadal structural fluctuations that significantly influence regional weather and climate. Understanding the drivers and mechanisms behind the AO’s spatial nonstationarity is critical for improving climate predictions related to the AO. Wepresent evidence that the Atlantic Multidecadal Oscillation (AMO) plays a pivotal role in modulating AO’s Pacific center in recent decades. The poleward amplified cooling associated with negative AMO enhances the north-south temperature gradient and results the strengthened westerly winds and stratospheric polar vortex (SPV) responses, which reflects more planetary waves from the North Pacific to the North Atlantic. This enhances the atmospheric coupling between these regions and leads to amore pronounced Pacific center within theAOpattern.Numerical simulations fromECHAM5 and 35 CMIP6 models further corroborate the essential role of the AMO. These findings advance our understanding of the mechanisms driving the variability of the AO pattern.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available February 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
